线性代数复习题

一、填空题:

1. 设矩阵 A 为三阶方阵,且|A|=3,则|-2A|=____-24。

4.
$$(1 -20 \ 1) \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \underline{1}$$
.

5. 已知矩阵 A, B, $C = (c_{ij})_{s \times n}$, 满足 AC = CB, 则 A = B 分别是 s、n 阶矩 阵.

6.
$$\[\[\] \] \begin{pmatrix} a-b & 3 & 5 \\ -1 & a+b & 2 \] = \begin{pmatrix} 2 & 3 & 5 \\ -1 & 4 & 2 \], \] \[\[\] \] \[a = \underline{\qquad}, b = \underline{\qquad}, b = \underline{\qquad} a = 3, b = 1. \]$$

- 7. 一个非零向量是线性 的,一个零向量是线性 的.
- 8. 若A、B均为 3 阶矩阵,且|A|=2,|B|=5,则 $|5A^*B^{-3}|=$ _____4
- 9. 设 A 为 4 阶方阵,且 |A| = -2,则 A 的伴随矩阵 A^* 的行列式 $|A^*|$ 等于______-8
- 10. 已知 B 为可逆矩阵,则 $\{[(B^{-1})^T]^{-1}\}^T = B$ 。

11. 设
$$A = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 3 & 1 \end{pmatrix}$, 若使 $AB + C$ 可以运算,则 C 的行数必是 _____,

列数必是 4,3。

- 二、选择题: (共12分,每题2分)
- 1. n 阶方阵 A 的行列式 $|A| \neq 0$ 是矩阵 A 可逆的 (C)

A. 充分条件 B. 必要条件 C. 充要条件 D. 无关条件

- 2. A, B, C为 n 阶方阵,则下列各式正确的是(\mathbf{D})
- (A) AB=BA (B) AB=0, 则 A=0 或 B=0
- C) $(A+B)(A-B)=A^2-B^2$ (D) AC=BC且 C可逆,则 A=B
- 3..设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 3 & -5 \end{pmatrix}$, 则 $A^{-1} = (C)$
 - $(A) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & -2 \\ 0 & 3 & 1 \end{pmatrix}$

- (B) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -3 & -5 \end{vmatrix}$
- (C) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 2 \\ 0 & 2 & 1 \end{pmatrix}$
- (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & -2 \\ 0 & 2 & 1 \end{pmatrix}$
- 4. 设 A、B、C 为 n 阶方阵,则下列说法正确的是(A)

A、若
$$AB = O$$
,则 $|A| = 0$ 或 $|B| = 0$ B、 $(A + B)^2 = A^2 + B^2 + 2AB$

$$B_{s}(A+B)^{2} = A^{2} + B^{2} + 2AB$$

$$C_{x} (A+B)^{-1} = A^{-1} + B^{-1}$$

D、若
$$AB = AC$$
,则 $B = C$

5. 满足矩阵方程 $\begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 2 \\ 1 & 0 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$ 的矩阵 X = (D)

$$\mathbf{A}, \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$

$$\mathbf{B}, \begin{pmatrix} 2 & 0 \\ -1 & 3 \\ 1 & 1 \end{pmatrix}$$

A,
$$\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$
 B, $\begin{pmatrix} 2 & 0 \\ -1 & 3 \\ 1 & 1 \end{pmatrix}$ C, $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & -1 & 0 \end{pmatrix}$ D, $\begin{pmatrix} -4 & 7 \\ 3 & -3 \\ 4 & -5 \end{pmatrix}$

$$D, \begin{pmatrix} -4 & 7 \\ 3 & -3 \\ 4 & -5 \end{pmatrix}$$

- 6. 己知 A,B,C 均为 n 阶可逆矩阵,且 ABC=I ,则下列结论必然成立的是(A).
 - A, BCA = I
- B, ACB = I C, BAC = I D, CBA = I
- 7. 设 $A \setminus B$ 均为n阶矩阵,满足AB = O,则必有(A)
- $A \cdot |A| = 0$ $\vec{y} |B| = 0$ $B \cdot r(A) = r(B)$ $C \cdot A = O$ $\vec{y} B = O$ $D \cdot |A| + |B| = 0$

- 8. 设A为n阶矩阵,且 $\left|A\right|=2$,则 $\left\|A\right|A^{T}\right|=$ (B)

(A) 2^n (B) 2^{n+1} (C) 2^{n-1} (D) 4
9. 设 A , B 均为 n 阶方阵,下面结论正确的是(B)。
(A)若 A , B 均可逆,则 A + B 可逆 (B) 若 A , B 均可逆,则 A B 可逆
(C) 若 $A+B$ 可逆,则 $A-B$ 可逆 (D) 若 $A+B$ 可逆,则 A , B 均可逆
10. 已知 4 阶矩阵 A 的第三列的元素依次为 $1,3,-2,2$,它们的余子式的值分别为
3,-2,1,1,则 $ A =(A)$
(A) 5 (B) -5 (C) -3 (D) 3 11. 设A、B为n阶方阵, E为n阶单位阵,则下列等式正确的是(D)
A, $(A+B)^2 = A^2 + B^2 + 2AB$ B, $(A+B)^{-1} = A^{-1} + B^{-1}$
$C_{\searrow} A(A+B) = (A+B)A$ $D_{\searrow} (A+E)^2 = A^2 + 2A + E$
12. 设 $m \times n$ 矩阵 A 的秩等于 n ,则必有(D)。
A, $m = n$ B, $m < n$ C, $m > n$ D, $m \ge n$
13. 设 $A \setminus B$ 为 n 阶方阵,则下列说法正确的是(A)
A. 若 $AB = O$,则 $ A = 0$ 或 $ B = 0$ B. 若 $AB = O$,则 $A = O$ 或 $B = O$
C. 若 $ AB = 0$,则 $A = O$ 或 $B = O$ D. 若 $ AB = 0$,则 $A = O$ 且 $B = O$
14. 设 A 为3阶矩阵,若 $ A =k \neq 0$,则 $ kA =$ (D)
A, $3k$ B, k^2 C, k^3 D, k^4
15. 设 $A \setminus B$ 为 n 阶方阵, E 为 n 阶单位阵,则下列等式正确的是(D)
A、若 $AB = AC$,则 $B = C$ B、 $A^2 - B^2 = (A + B)(A - B)$
$C_{\searrow} A(A+B) = (A+B)A$ $D_{\searrow} (A+E)^2 = A^2 + 2A + E$
16. 已知向量组 $\alpha_1 = (1,1,-1,1), \alpha_2 = (2,0,t,0), \alpha_3 = (0,-2,5,-2)$ 的秩为 2 ,则 $t = (A)$
A、3 B、-3 C、2 D、-2 17设 n 阶方阵 A、B 满足 AB=0,则必有(C)
(A) $A=0$ 或 $B=0$ (B) $A+B=0$ (C) $ A =0$ 或 $ B =0$ (D) $ A + B =0$

18.. 读
$$\left(\begin{array}{cc} x_1 & x_2 \\ -3 & 4 \end{array}\right) \left(\begin{array}{cc} 3 & -2 \\ y_1 & y_2 \end{array}\right) = 5 \left(\begin{array}{cc} 1 & 0 \\ -1 & 2 \end{array}\right), \quad 则 \left(y_1, y_2\right) = (B)$$

- (A) (1, 2) (B) (1, 1) (C) (2, 1) (D) (1, -1)
- 19. A, B 均为n阶矩阵,且 $(A+B)(A-B) = A^2 B^2$,则必有(C)
- (A) B = E
- (B) A = E (C) AB = BA
- (D) A = B
- 20. 矩阵方程组 $A_{m\times n}X = B$ 有解的充分必要条件是(D)
- (A) B = 0 (B) m < n (C) m = n
- (D) R(A) = R(A, B)
- 21. 设 A 是 2 阶方阵, 且行列式|A| = 4,则|-3A| = (D)
- (A) -12 (B) 12 (C) -36

- 22. 若有 $\begin{pmatrix} k & 1 & 1 \\ 3 & 0 & 1 \\ 0 & 2 & -1 \end{pmatrix}$ $\begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix} = \begin{pmatrix} k \\ 6 \\ 5 \end{pmatrix}$, 则 k 等于 A
- (A) 1
- (B) 2
- (C) 3
- (D) 4

第三题 计算题:

1. 沒
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$, 求 $|AB - BA|$.

$$\widetilde{R}: : BA - AB = \begin{pmatrix} 4 & 0 \\ -5 & 1 \end{pmatrix} - \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & -1 \end{pmatrix}$$

$$\therefore |BA - AB| = \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} = 2$$

2. 设
$$A = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$$
, $B = \begin{pmatrix} u & v \\ 8 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 3 & -2 \\ x & y \end{pmatrix}$, 且 $A + 3B - 2C = 0$, 求 x, y, u, v 的值

解: A+3B-2C=0,即

左边=
$$\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$$
 + 3 $\begin{pmatrix} u & v \\ 8 & 3 \end{pmatrix}$ - 2 $\begin{pmatrix} 3 & -2 \\ x & y \end{pmatrix}$ = $\begin{pmatrix} x+3u-6 & 0+3v+4 \\ 0+24-2x & y+9-2y \end{pmatrix}$ = $\begin{pmatrix} x+3u-6 & 3v+4 \\ 24-2x & 9-y \end{pmatrix}$ = $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

这时,
$$x = 12, y = 9, u = -2, v = -\frac{4}{3}$$

3. 设
$$\begin{pmatrix} 4 & 1 \\ 6 & 1 \end{pmatrix} X = \begin{pmatrix} 5 & 4 \\ 5 & 8 \end{pmatrix}$$
,求矩阵 X 。

记
$$A = \begin{pmatrix} 4 & 1 \\ 6 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 4 \\ 5 & 8 \end{pmatrix}$, 先求出矩阵 A 的逆矩阵,再和矩阵 $B = \begin{pmatrix} 5 & 4 \\ 5 & 8 \end{pmatrix}$ 相乘

$$A^{-1} = \frac{1}{-2} \begin{pmatrix} 1 & -1 \\ -6 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ 3 & -2 \end{pmatrix}$$

$$X = A^{-1}B = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 5 & 4 \\ 5 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 5 & -4 \end{pmatrix}$$

4. 设
$$\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} A = 2 \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
, 求矩阵 A.

解
$$A = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}^{-1}$$
 $\begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix}$ $= \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ -4 & -14 \end{pmatrix}$

5. 判断矩阵
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ -1 & -1 & 0 \end{pmatrix}$$
 是否可逆,若可逆请求其逆矩阵.

$$\longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{5} & -\frac{1}{5} & \frac{2}{5} & 0 \\ 0 & 1 & -\frac{3}{5} & \frac{3}{5} & -\frac{1}{5} & 0 \\ 0 & 0 & -\frac{9}{5} & -\frac{1}{5} & \frac{2}{5} & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -\frac{2}{9} & \frac{4}{9} & \frac{1}{9} \\ 0 & 1 & 0 & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & -\frac{9}{5} & \frac{1}{9} & -\frac{2}{9} & -\frac{5}{9} \end{pmatrix}$$

6. 判断矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 是否可逆,并求其逆矩阵.

解; 因为
$$|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{vmatrix} = 2 \neq 0$$
 ,所以 A 是可逆的。

$$M_{11} = 2$$
, $M_{12} = 3$, $M_{13} = 2$, $M_{21} = -6$, $M_{22} = -6$, $M_{25} = -2$,

$$M_{31} = -4$$
, $M_{32} = -5$, $M_{33} = -2$

$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{2} \begin{pmatrix} 2 & 6 & -4 \\ -3 & -6 & 5 \\ 2 & 2 & -2 \end{pmatrix}$$

7. 求矩阵
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$
的逆矩阵

$$\longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{5} & -\frac{1}{5} & \frac{2}{5} & 0 \\ 0 & 1 & -\frac{3}{5} & \frac{3}{5} & -\frac{1}{5} & 0 \\ 0 & 0 & -\frac{9}{5} & -\frac{1}{5} & \frac{2}{5} & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -\frac{2}{9} & \frac{4}{9} & \frac{1}{9} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{2}{9} & \frac{4}{9} & \frac{1}{9} \\ 0 & 1 & 0 \\ \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

8. 求矩阵
$$A = \begin{pmatrix} 1 & 3 & -5 & 7 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
的逆矩阵 A^{-1} .

解:

因为 $|A|=1\neq0$,所以矩阵 A 可逆.利用矩阵的初等行变换法求 A^{-1} ,

$$(A:E) \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & -3 & 11 & -20 \\ 0 & 1 & 0 & 0 & \vdots & 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 & \vdots & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$b \quad A^{-1} = \begin{pmatrix} 1 & -3 & 11 & -20 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

9. 已知矩阵
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & t & 12 \\ 3 & -1 & 9 \end{pmatrix}$$
 的秩 $R(A) < 3$,请求 t 的值..

解: 对矩阵 A 作初等变换

故当 t=-3 时,矩阵 A 的秩 R(A) <3..

10. 设
$$A = \begin{pmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{pmatrix}$$
, 问 K 为何值时, 可使

(1)
$$r(A)=1$$
, (2) $r(A)=2$, (3) $r(A)=3$

$$\widehat{\mathbb{H}}_{k} A = \begin{pmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{pmatrix} \xrightarrow{r_{2}+r_{1} \atop r_{3}-kr_{1}} \rightarrow \begin{pmatrix} 1 & -2 & 3k \\ 0 & 2(k-1) & 3(-1+k) \\ 0 & 2(k-1) & 3(1-k^{2}) \end{pmatrix} \xrightarrow{r_{3}-r_{2}} \begin{pmatrix} 1 & -2 & 3k \\ 0 & 2(k-1) & 3(-1+k) \\ 0 & 0 & -3(k-1)(2+k) \end{pmatrix}$$

$$\stackrel{\underline{}}{\rightrightarrows} k = 1 \stackrel{\underline{}}{\boxminus} , \quad A = \begin{pmatrix} 1 & -2 & 3k \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, r(A) = 1$$

$$\stackrel{\text{"}}{=} k = -2$$
 时, $r(A) = 2$

$$\stackrel{\text{\tiny $\underline{\omega}$}}{=} k \neq 1, k \neq -2 \text{ ind }, \quad r(A) = 3$$

11. 求下矩阵的秩
$$A = \begin{pmatrix} 3 & 1 & 0 & 2 \\ 1 & -1 & 2 & -1 \\ 1 & 3 & -4 & 4 \end{pmatrix}$$
.

12. 设矩阵
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 2 & \lambda \\ 5 & 6 & 3 \end{pmatrix}$$
, 请讨论矩阵 A 的秩.

解: 对矩阵 A 作初等变换

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 2 & \lambda \\ 5 & 6 & 3 \end{pmatrix} r_2 - 3r_1 \begin{pmatrix} 1 & 2 & -1 \\ 0 & -4 & \lambda + 3 \\ 0 & -4 & 8 \end{pmatrix} r_3 - r_2 \begin{pmatrix} 1 & 2 & -1 \\ 0 & -4 & \lambda + 3 \\ 0 & 0 & 5 - \lambda \end{pmatrix}$$

故当 $\lambda = 5$ 时,r(A) = 2;故当 $\lambda \neq 5$ 时,r(A) = 3.

13.已知矩阵
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & t & 12 \\ 3 & -1 & 9 \end{pmatrix}$$
 的秩 $R(A) < 3$,请求 t 的值..

解: 对矩阵 A 作初等变换

$$A \xrightarrow{r_{2}-4r_{1} \atop r_{3}-3r_{1}} \longrightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & t-8 & 11 \\ 0 & -7 & -7 \end{pmatrix} \xrightarrow{\frac{1}{7}r_{3} \atop r_{2} \leftrightarrow r_{3}} \longrightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & -1 \\ 0 & t-8 & 11 \end{pmatrix}$$

$$\xrightarrow{r_{3}-(t-8)r_{2}} \longrightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & t+3 \end{pmatrix}$$

故当 t = -3 时,矩阵 A 的秩 R(A) < 3...

四、证明题:

1, A, B都是 n 阶对称阵,证明 AB是对称阵的充要条件是 AB=BA

1、证明: 由 A, B 都是 n 阶对称阵 $:: A^T = A, B^T = B$

充分性:
$$:: (AB)^T = B^T A^T = BA$$
 又 $:: AB = BA$

 $\therefore (AB)^{T} = AB$, 即 AB 是对称阵

必要性:设AB是对称阵,则

$$AB = (AB)^T = B^T A^T = BA : AB = BA$$

2.设A 为为n阶可逆矩阵, A^* 为A 的伴随矩阵,求证A 为满秩矩阵.

由A 为可逆矩阵,则 $|A| \neq 0$

又由
$$|AA^*| = |A|E|$$
 得 $|A^*| = |A|^{n-1} \neq 0$

所以 A^* 满秩

3. 当 $|A| \neq 0$ 时,求证 $|A^*| = |A|^{n-1}$

证
$$\left|AA^*\right| = \left\|A\right|E\right| = \left|A\right|^n$$
,即 $\left|A\right|\left|A^*\right| = \left|A\right|^n$,则 $\left|A^*\right| = \left|A\right|^{n-1}$

4. 若 A 是反对称矩阵, B 是对称矩阵,求证: AB 是反对称矩阵的充要条件是 AB = BA.

证证明: (必要性) AB 为反对称矩阵,A 为反对称矩阵,B 为对称矩阵,则,

$$AB = -(AB)^T = -B^T A^T = BA$$
 即 A, B 可交换.

再证充分性, 由 AB = BA, A 为反对称矩阵, B 为对称矩阵, 则

$$(AB)^T = B^T A^T = B(-A) = -BA = -AB$$
, 即 AB 为反对称矩阵.

4.A 为任意矩阵,证明: $A^T A$ 和 AA^T 均为对称矩阵.

证明: 由A为矩阵

则
$$(A^T A)^T = A^T (A^T)^T = A^T A$$
,

$$\mathbb{H}(AA^T)^T = (A^T)^T A^T = A^T$$

故 $A^T A$ 和 AA^T 均为对称矩阵