第三章 向量复习题

一、填空题:

- 1. 当t____时,向量 $\alpha_1 = (1,2,-2)^T$, $\alpha_2 = (4,t,3)^T$, $\alpha_3 = (3,-1,1)^T$ 线性无关.
- 3. 如果 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关,且 α_{n+1} 不能由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示,则 $\alpha_1,\alpha_2,\cdots,\alpha_{n+1}$ 的线性
- 4. 设 $\alpha_1 = (2,5)^T$, $\alpha_2 = (1, a)^T$, 当 $a = _____$ 时, α_1, α_2 线性相关.
- 6. 设向量组 A: $\alpha_1,\alpha_2,\alpha_3$ 线性无关, $\alpha_1+\alpha_3$, $\alpha_2-\alpha_1$, $\alpha_2+\alpha_3$ 线性_____
- 7. 设A为n阶方阵,且r(A)=n-1, α_1,α_2 是 AX=0 的两个不同解,则 α_1 , α_2 一定线性_____
- 8. 向量组 β_1, \dots, β_l 能由向量组 $\alpha_1, \dots, \alpha_m$ 线性表示的充分必要条件是 $R(\alpha_1, \alpha_2, \dots \alpha_m)$ _____ $R(\alpha_1, \alpha_2, \dots \alpha_m, \beta_1, \beta_2, \dots, \beta_l)$ 。(填大于,小于或等于)
- 9. 设向量组 $\alpha_1 = (1,1,1)$, $\alpha_2 = (1,2,3)$, $\alpha_3 = (1,3,t)$ 线性相关,则 t 的值为
- 二、选择题:
- 1.. n 阶方阵 A 的行列式 |A|=0 ,则 A 的列向量 ()
 - A. 线性相关 B. 线性无关 C. R(A) = 0 D. $R(A) \neq 0$
- 2. 设A为n阶方阵,R(A) = r < n,则A的行向量中()
 - A、必有r个行向量线性无关 B、任意r个行向量构成极大线性无关组
 - C、任意r个行向量线性相关 D、任一行都可由其余r个行向量线性表示
- 3. 设有n维向量组(I): $\alpha_1,\alpha_2,\cdots,\alpha_r$ 和(II): $\alpha_1,\alpha_2,\cdots,\alpha_m$ (m>r),则().
 - A、向量组(I)线性无关时,向量组(II)线性无关

B、向量组(I)线性相关时,向量组(II)线性相关
C、向量组(II)线性相关时,向量组(I)线性相关
D、向量组(II)线性无关时,向量组(I)线性相关
[4. 下列命题中正确的是()] [6] (A) 任意 $n \land n+1$ 维向量线性相关 (B) 任意 $n \land n+1$ 维向量线性无关
(C) 任意 $n+1$ 个 n 维向量线性相关 (D) 任意 $n+1$ 个 n 维向量线性无关
5. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性相关且秩为 s ,则()
(A) $r = s$ (B) $r \le s$ (C) $s \le r$ (D) $s < r$
6. n 维向量组 α_1 , α_2 ,…, α_s (3 \leq s \leq n)线性无关的充要条件是 ().
(A) α_1 , α_2 ,…, α_s 中任意两个向量都线性无关
(p) 由在,公台县初了处田廿入台县处林丰二
(B) α_1 , α_2 ,…, α_s 中任一个向量都不能用其余向量线性表示
(C) α_1 , α_2 ,…, α_s 中存在一个向量不能用其余向量线性表示
(D) α_1 , α_2 ,…, α_s 中不含零向量
7. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关的充要条件是()
A、任意 $lpha_i$ 不为零向量
\mathbf{B} 、 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 中任两个向量的对应分量不成比例
\mathbb{C} 、 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 中有部分向量线性无关
\mathbf{D} 、 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 中任一向量均不能由其余 \mathbf{n} -1 个向量线性表示
8. 设 A 为 n 阶方阵, $R(A) = r < n$,则 A 的行向量中()
A、必有 r 个行向量线性无关
B、任意 r 个行向量构成极大线性无关组
\mathbf{C} 、任意 r 个行向量线性相关 \mathbf{D} 、任一行都可由其余 r 个行向量线性表示
9. 设 A 为 n 阶方阵,且秩 $(A)=n-1$. α_1,α_2 是非齐次方程组 $AX=B$ 的两个不同的允

向量,则 <i>AX</i> =	:0的通解为()		
A, $k\alpha_1$	\mathbf{B} , $k\alpha_2$	$C_{\gamma} k(\alpha_1 - \alpha_2)$	$D, k(\alpha_1 + \alpha_2)$
10. 已知向量	$ \text{AL } \alpha_1 = (1,1,-1,1), \alpha_2 = ($	$(2,0,t,0), \alpha_3 = (0,-2,5,-1)$	2)的秩为 2,则 $t = ()$
A, 3	В、-3	C, 2 D,	-2
11. 设A为n	价方阵, $R(A) = r < n$,	则 A 的行向量中()	
B、任意 <i>r</i> C、任意 <i>r</i> D、任一行	个行向量线性无关 个行向量构成极大线性 个行向量线性相关 行都可由其余r个行向量	量线性表示	
12. 设向量组	A: $\alpha_1, \alpha_2, \alpha_3$ 线性无关	长,则下列向量组线性 无	E关的是 ()
A, $\alpha_1 + \alpha$	$\alpha_2 + \alpha_3, 2\alpha_1 - 3\alpha_2 + 2\alpha_3$	α_3 , $3\alpha_1 - 2\alpha_2 + 3\alpha_3$	
$\mathbf{B} \cdot \alpha_1 + \alpha$	α_2 , $\alpha_2 + \alpha_3$, $\alpha_3 - \alpha_1$		
$C \cdot \alpha_1 + 2$	α_2 , $2\alpha_2 + 3\alpha_3$, $3\alpha_3 +$	$+\alpha_1$	
$D_{\gamma} - \alpha_1 + \alpha_2$	α_2 , $\alpha_2 + \alpha_3$, $-\alpha_1 + 2\alpha_2$	$\alpha_2 + \alpha_3$	
(A)必有一个 (B)必有两个 (C)必有一个	, , ,	生组合 .	
15. 设A为n	阶方阵,且秩 $R(A) = n$	-1 , a_1 , a_2 是非齐次方程	组 $Ax = b$ 的两个不同的
解向量,则 A	x=0 的通解为 ()	
$(A) k(a_1 + a_2)$	(B) $k(a_1 - a_2)$	(C) ka_1 (D)	ka_2
16. 己知向量	:组α ₁ ,,α _m 线性相关,	则()	
(B) 该向量组 (C) 该向量组	且的任何部分组必线性 且的任何部分组必线性 且的秩小于 m . 且的最大线性无关组是	无关 .	

17. 己知 $R(\alpha_1, \alpha_2, \alpha_3) = 2, R(\alpha_2, \alpha_3, \alpha_4) = 3$, 则 (

- (A) $\alpha_1, \alpha_2, \alpha_3$ 线性无关
- (B) α₂,α₃,α₄ 线性相关
- (C) α_1 能由 α_2 , α_3 线性表示 (D) α_4 能由 α_1 , α_2 , α_3 线性表示

18. 若有
$$\begin{pmatrix} k & 1 & 1 \\ 3 & 0 & 1 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix} = \begin{pmatrix} k \\ 6 \\ 5 \end{pmatrix}$$
, 则 k 等于

(A) 1

- (D) 4

第三题 计算题:

1. 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 2 \\ -5 \\ 3 \\ 6 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ 5 \\ 4 \\ 8 \end{pmatrix}, \alpha_5 = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix}$$

- (1) 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的秩以及它的一个极大线性无关组;
- (2) 将其余的向量用所求的极大线性无关组线性表示。

2. 求向量组 A: $\alpha_1 = (-2,6,2,0)^T$, $\alpha_2 = (1,-2,-1,0)^T$, $\alpha_3 = (-2,-4,0,2)^T$,

 $\alpha_4 = (0,10,2,-2)^T$,的一个极大无关组,并将其余向量由它线性表示.

- 3. $\forall \alpha_1 = (1,4,3)^T, \alpha_2 = (2,a,-1)^T, \alpha_3 = (-2,3,1)^T$
- 1) a 为何值时, $\alpha_1,\alpha_2,\alpha_3$ 线性无关.
- 2) a 为何值时, $\alpha_1,\alpha_2,\alpha_3$ 线性相关.

4. 求向量组 $A: \alpha_1 = (1,2,-1,1)^T$ 、 $\alpha_2 = (2,-3,1,-2)^T$ 、 $\alpha_3 = (4,1,-1,0)^T$ 的极大无关

- 5. 己知 $\alpha_1 = (1,4,2)^T$, $\alpha_2 = (2,7,3)^T$, $\alpha_3 = (0,1,a)^T$, $\beta = (3,10,4)^T$, 问 a 为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 唯一线性表示? 并写出表示式
- 7. 求向量组A: $\alpha_1 = (1,-1,2)^T$, $\alpha_2 = (0,3,1)^T$, $\alpha_3 = (1,5,4)^T$, $\alpha_4 = (1,-2,2)^T$, $\alpha_5 = (2,-3,4)^T$ 的一个极大无关组,并将其余向量由它线性表示.
- 8. 试求向量组 α_1 =(1,1,2,2)^T, α_2 =(0,2,1,5)^T, α_3 =(2,0,3,-1)^T, α_4 =(1,1,0,4)^T 的秩和该向量组的一个最大无关组,并将其他向量用此最大无关组表示。

四、证明题: (10分)

- 1、 设向量组A: $\alpha_1,\alpha_2,\alpha_3$ 线性无关,求证: $\alpha_1+2\alpha_2$, $2\alpha_2-3\alpha_3$, $3\alpha_3+\alpha_1$ 线性无关.
- 2. 已知向量组 a_1, a_2, a_3 线性无关, $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_1 + 2\alpha_3$ 线性无关.
- 3. 若向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 而 $\beta_1 = \alpha_1 + \alpha_2 + \alpha_3$, $\beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3$, $\beta_3 = \alpha_1 + 2\alpha_2 + 3\alpha_3$,试证: $\beta_1, \beta_2, \beta_3$ 线性无关。

鈛

密對线

------ 封能 超出

锹